
Synchronous Sequential Circuit

 The change of internal state occurs in response to the
synchronized clock pulses.

 Data are read during the clock pulse (e.g. rising-edge
triggered)

 It is supposed to wait long enough after the external input
changes for all flip-flop inputs to reach a steady value
before the next clock pulse

 Unsuitable Situations:
• Inputs can change at any time and cannot be synchronized with

a clock

• Circuit is large, a cost in time of transitions can not be avoided

Asynchronous Circuits

 Not synchronized by a common clock

 States change immediately after input changes

 For a given value of input variables, the system is stable if the
circuit reaches a steady state condition.

 The circuit reaches a steady‐state condition when yi = Yi for all i.

 A transition from one stable state to another occurs only in
response to a change in an input variable

 Fundamental‐mode operation
• The input signals change only when the circuit is in a stable condition

• The input signals change one at a time

 The time between two input changes must be longer than the
time it takes the circuit to reach a stable state.

 Timing is a Major Problem because of unequal delays through
various paths in the circuit

Why Asynchronous Sequential Circuits?

Asynchronous sequential circuits basics
 No clock signal is required
 Internal states can change at any instant of time when there is a change

in the input variables
 Have better performance but hard to design due to timing problems

Why Asynchronous Circuits?
 Accelerate the speed of the machine (no need to wait for the next clock

pulse).

 Simplify the circuit in the small independent gates.

 Necessary when having multi circuits each having its own clock.

Analysis Procedure
 The analysis consists of obtaining a table or a diagram that describes the

sequence of internal states and outputs as a function of changes in the
input variables.

Example Circuit

 First construction of
Asynchronous Circuits:
• using only gates

• with feedback paths

 Analysis:
• Lump all of the delay associated

with each feedback path into a
“delay” box

• Associate a state variable with
each delay output

• Construct the flow table

 Network equations

Q1
+ = X1X2’+ X1’X2Q2+X2Q1Q2’

Q2
+ = X1’X2Q1’+ X1Q2+ X2Q2

Z = X1 Q1  Q2

Example Circuit: Output Table

 1. Starting in total state
X1X2Q1Q2=0000

 2. Input changes to 01
• Internal state changes to 01 and then

to 11.
 3. Input changes to 11.

• Go to unstable total state 1111 and
then to 1101.

 4. Input changes to 10.
• Go to unstable total state 1001 and

then to 1011.
 The output sequence:

0 (0) (1) 0 (1) 0 (0) 1
• Condensed to the form

0 (1) 0 (1) 0 1.
• Two transient 1 outputs is dangerous

can be eliminated by proper design.

Q1
+ = X1X2’+ X1’X2Q2+X2Q1Q2’

Q2
+ = X1’X2Q1’+ X1Q2+ X2Q2

Z = X1  Q1  Q2

Transition Table

 Transition table is useful to analyze an asynchronous circuit
from the circuit diagram. Procedure to obtain transition table:

1. Determine all feedback loops in the circuits

2. Mark the input (yi) and output (Yi) of each feedback loop

3. Derive the Boolean functions of all Y’s

4. Plot each Y function in a map and combine all maps into one table (flow
table)

5. Circle those values of Y in each square that are equal to the value of y in
the same row (stable states)

Asynchronous Sequential Analysis

x1

x2

z

Y=x1x2 x2y =x1x2 + x2y
z= Y

x1

x2

z
Y

y

Asynchronous Sequential Analysis

x1

x2

z

Y=x1x2 x2y yx1=x1x2 + x2y + yx1

z= y
x1

x2

Y

y

y

Asynchronous Sequential Analysis

Asynchronous Sequential Circuit

 The state variables: Y1 and Y2

• Y1 = xy1+ xy2

• Y2 = xy1 + xy2

CUT

CUT

Transition Table

 Combine the internal state with input variables
• Stable total states:

y1y2x = 000, 011, 110 and 101

Y1 = xy1+ xy2

Y2 = xy1 + xy2

Transition Table

 In an asynchronous sequential circuit, the
internal state can change immediately after
a change in the input.

 It is sometimes convenient to combine the
internal state with input value together and
call it the Total State of the circuit. (Total
state = Internal state + Inputs)

 In the example , the circuit has
• 4 stable total states: (y1y2x= 000, 011,

110, and 101)

• 4 unstable total states: (y1y2x= 001, 010,
111, and 100)

Transition Table

 If y=00 and x=0 Y=00 (Stable state)

 If x changes from 0 to 1 while y=00,
the circuit changes Y to 01 which is
temporary unstable condition (Yy)

 As soon as the signal propagates to
make Y=01, the feedback path causes a
change in y to 01. (transition form the
first row to the second row)

 If the input alternates between 0 and
1, the circuit will repeat the sequence
of states:

Flow Table

 A flow table is similar to a transition table except that
the internal state are symbolized with letters rather
than binary numbers.

 It also includes the output values of the circuit for each
stable state.

Flow Table

 In order to obtain the
circuit described by a
flow table, it is necessary
to convert the flow table
into a transition table
from which we can derive
the logic diagram.

 This can be done through
the assignment of a
distinct binary value to
each state.

Assignements:
A≡0 B≡1

Race condition
 Two or more binary state variables will change value when one input

variable changes.

 Cannot predict state sequence if unequal delay is encountered.

 Non-critical race: The final stable state does not depend on the
change order of state variables

 Critical race: The change order of state variables will result in
different stable states. Must be avoided !!

Race Solution

 It can be solved by making a proper binary assignment to the
state variables.

 The state variables must be assigned binary numbers in such a
way that only one state variable can change at any one time
when a state transition occurs in the flow table.

Stability Check

 Asynchronous sequential circuits may oscillate between
unstable states due to the feedback
• Must check for stability to ensure proper operations

 Can be easily checked from the transition table
• Any column has no stable states unstable

Ex: when x1x2=11 in (b), Y and y are never the same

y Y

Y=x2(x1y)’=x’1x2+x2y’

Latches in Asynchronous Circuits

 The traditional configuration of asynchronous
circuits is using one or more feedback loops
• No real delay elements.

 It is more convenient to employ the SR latch as a
memory element in asynchronous circuits
• Produce an orderly pattern in the logic diagram with the

memory elements clearly visible.

 SR latch is an asynchronous circuit
• So will be analyzed first using the method for asynchronous

circuits.

SR Latch with NOR Gates
Y y

Y y

Constraints on Inputs

-

-

SR Latch with NOR Gates

S=1, R=1 (SR = 1)

should not be used

⇒ SR = 0 is

normal mode

should be

carefully

checked first

Y y

Y y

SR Latch with NAND Gates

S=0, R=0 (S+R=0)

should not be used

⇒ S+R=1 is

normal mode

(eq. S’R’=0)

should be

carefully

checked first, so it

is obtained

Y = S’ + Ry

Y y

Y y

Analysis Example

Y1 y1

Y2 y2

Analysis Example

 The procedure for analyzing an asynchronous
sequential circuit with SR latches can be summarized
as follows:
• Label each latch output with Yi and its external feedback

path with yi for i=1,2,…,k

• Derive the Boolean functions for the Si and Ri inputs in each
latch.

S1 = x1 y2 S2 = x1 x2

R1 = x1‘x2‘ R2 = x2‘ y1

S1 R1 = x1y2x1‘x2‘= 0

S2 R2 = x1x2x2‘y1= 0

Analysis Example

• Check whether SR =0 for each NOR latch or whether S’R’ =
0 for each NAND latch. (if either of these two conditions is
not satisfied, there is a possibility that the circuit may not
operate properly)

S1 R1 = x1y2x1‘x2‘= 0

S2 R2 = x1x2x2‘y1= 0

• Evaluate Y = S + R’y for each NOR latch or Y = S’ + Ry for
each NAND latch.

Y1 = S1 + R1‘ y1 = x1y2 + x1y1 + x2y1

Y2 = S2 + R2‘ y2 = x1x2 + x2y2 + y1’y2

Analysis Example

• Construct a map, with the y’s representing the rows and the x inputs
representing the columns.

• Plot the value of Y=Y1Y2…Yk in the map.

• Circle all stable states such that Y=y. The result is then the
transition table.

Transition Table

• The transition table shows that the circuit
is stable

• Race Conditions: there is a critical race
condition when the circuit is initially in
total state y1y2x1x2 = 1101 and x2 changes
from 1 to 0.

• The circuit should go to the total state
0000.

• If Y1 changes to 0 before Y2, the circuit
goes to total state 0100 instead of 0000.

Y1 = x1y2 + x1y1 + x2y1

Y2 = x1x2 + x2y2 + y1’y2

Implementation Procedure

 Procedure to implement an asynchronous sequential
circuits with SR latches:
• Given a transition table that specifies the excitation

function Y = f(y1,-,yn, x1,-, xm) derive a pair of maps for each
Si and Ri using the latch excitation table

• Derive the Boolean functions for each Si and Ri (do not to
make Si and Ri equal to 1 in the same minterm square; for
NAND latch, use the complemented values)

• Draw the logic diagram using k latches together with the
gates required to generate the S and R

Implementation Example
 Given a transition table Y = f(y1,-,yn, x1,-, xm) , then the general procedure for

implementing a circuit with SR latches is specified by the excitation function,
and can be summarized as follows:
• Given a transition table

• Determine the Boolean functions for the S and R inputs of each latch (this
is done by using the latch excitation table)

Implementation Example
• From maps: the simplified Boolean functions are

• Check whether SR=0 for each NOR latch or whether S'R'=0 for
each NAND latch:

SR = x1x2’x1'= 0
• Draw the logic diagram, using k latches together with the gates

required to generate the S and R Boolean functions obtained in
step1 (for NAND latches, use the complemented values)

NOR latch

Primitive Flow Table

 Primitive flow table - has exactly one stable total
state (internal state + input) per row

 To avoid the timing problems:
• Only one input variable changes at a time

• Networks reach a stable total state between input
changes (Fundamental Mode)

 Every change in input changes the state

Design procedure

1. Obtain a primitive table from specifications

2. Reduce flow table by merging rows in the
primitive flow table

3. Assign binary state variables to each row of
reduced table

4. Assign output values to dashes associated with
unstable states to obtain the output map

5. Simplify Boolean functions for excitation and
output variables;

6. Draw the logic diagram

Design Example 1:

 Problem Statement:
• Design a gated latch circuit (memory element) with two

inputs, G(gate) and D(Data) and one output Q.

• The Q output will follow the D input as long as G=1. When
G goes to 0, the information that was present at the D
input at the time of transition is retained at the Q output.
 Q = D when G =1

 Q retains its value when G goes to 0

Design Example 1:

1-Primitive Flow Table
 A primitive flow table is a flow table

with only one stable total state (internal
state + input) in each row.

 In order to form the primitive flow
table, we first form a table with all
possible total states, combinations of
the inputs and internal states,
simultaneous transitions of two input

c d b a b a c

variables are not allowed

d c a b a b e f e f

G

D

Q

Design Example 1

1-Primitive Flow Table

 One square in each row is a stable
state for that row.

 First, we note that both inputs are
not allowed to change at the same
time.

• We enter dash marks in each row
that differs in two or more
variables from the input variables
associated with the stable state.

 Next it is necessary to find values
for the two squares adjacent to the
stable state in each row.

• the previous table may support in
deriving the necessary information.

 All outputs associated with unstable
states are don’t care conditions

• We marked them with a dash.

c,0

d,0a,0

f,1b,1

e,1

00 1001

11

00

11

01 10

01

10

10

00

11

10

00

01

0011

Design Example 1

2-Reduction of the Primitive
Flow Table

• Two or more rows can be
merged into one row if
there are non-conflicting
states and outputs in every
columns.

• After merged into one row:
• Don’t care entries are

overwritten

• Stable states and output values
are included

• A common symbol is given to the
merged row

Candidates states for merging:

Design Example 1
3-Transition Table and Logic Diagram

 In order to obtain the circuit described by the reduced flow table,
it is necessary to assign a distinct binary value to each state.

 This converts the flow table to a transition table.

 A binary state assignment must be made to ensure that the circuit
will be free of critical race.

a=0, b=1 in this example

Transition table and

output map

Gated-latch logic diagram

Design Example 1
4. Implementation with SR Latch

Circuit with SR latch

Design Example:

5- Assigning Outputs to Unstable States

 While the stable states in a flow table have specific output values
associated with them, the unstable states have unspecified output
entries designated by a dash.

 These unspecified output values must be chosen so that no
momentary false outputs occur when the circuit switches between
stable states.

• If the two stable states have the save output value, then an
unstable states that are a transient state between them must
have the same output.

• If an output variable is to change as a result of a state change,
then this variable is assigned a don’t care condition*.

Design Example 1

Example:

• If a changes to b, the two stable states
have the same output value =0 (00: 0)

the transient unstable state b in the
first row must have the same output
value = 0

if c changes to d same for 11: 1
• If b changes to c, the two stable states

have different output values 01: x
the transient unstable state c in the
second row is assigned a don’t care
condition

if d changes to a same for 10: x

5- Assigning Outputs to Unstable States

0

1

x

x

